Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 414
Filter
1.
Atmosphere ; 14(5), 2023.
Article in English | Scopus | ID: covidwho-20245280

ABSTRACT

The COVID-19 lockdown contributes to the improvement of air quality. Most previous studies have attributed this to the reduction of human activity while ignoring the meteorological changes, this may lead to an overestimation or underestimation of the impact of COVID-19 lockdown measures on air pollution levels. To investigate this issue, we propose an XGBoost-based model to predict the concentrations of PM2.5 and PM10 during the COVID-19 lockdown period in 2022, Shanghai, and thus explore the limits of anthropogenic emission on air pollution levels by comprehensively employing the meteorological factors and the concentrations of other air pollutants. Results demonstrate that actual observations of PM2.5 and PM10 during the COVID-19 lockdown period were reduced by 60.81% and 43.12% compared with the predicted values (regarded as the period without the lockdown measures). In addition, by comparing with the time series prediction results without considering meteorological factors, the actual observations of PM2.5 and PM10 during the lockdown period were reduced by 50.20% and 19.06%, respectively, against the predicted values during the non-lockdown period. The analysis results indicate that ignoring meteorological factors will underestimate the positive impact of COVID-19 lockdown measures on air quality. © 2023 by the authors.

2.
Aerosol and Air Quality Research ; 23(5), 2023.
Article in English | Web of Science | ID: covidwho-20243921

ABSTRACT

PM2.5 was continuously collected in Ho Chi Minh City (HCMC), Vietnam, during the period from September 2019 to August 2020, which included the period of socioeconomic suppression caused by restrictions imposed in the face of the coronavirus disease of 2019. The concentrations of PM2.5 mass, water-soluble ions (WSIs), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined to evaluate the seasonal variations in PM2.5, the effect of socioeconomic suppression on PM2.5, and potential PM2.5 sources in HCMC. The PM2.5 mass concentration during the sampling period was 28.44 +/- 11.55 mu g m(-3) (average +/- standard deviation). OC, EC, and total WSIs accounted for 30.7 +/- 6.6%, 9.7 +/- 2.9%, and 24.9 +/- 6.6% of the PM2.5 mass, respectively. WSOC contributed 46.4 +/- 10.1% to OC mass. NO3-, SO42-, and NH4+ were the dominant species in WSIs (72.7 +/- 17.7% of the total WSIs' mass). The concentrations of PM2.5 mass and total WSIs during the rainy season were lower than those during the dry season, whereas the concentrations of carbonaceous species during the rainy season were higher. The concentrations of PM2.5 mass and chemical species during the socioeconomic suppression period significantly decreased by 45%-61% compared to the values before this period. The OC/EC ratio (3.28 +/- 0.61) and char-EC/soot-EC (4.88 +/- 2.72) suggested that biomass burning, coal combustion, vehicle emissions, cooking activities are major PM2.5 sources in HCMC. Furthermore, the results of a concentration-weighted trajectory analysis suggested that the geological sources of PM2.5 were in the local areas of HCMC and the northeast provinces of Vietnam (where coal-fired power plants are located).

3.
Atmosphere ; 14(5), 2023.
Article in English | Scopus | ID: covidwho-20239115

ABSTRACT

Air pollution is a serious problem in Romania, with the country ranking 13th among the most polluted countries in Europe in the 2021 World Air Quality Report. Despite the recognized impact of pollutants on health, there has been a lack of large-scale studies conducted in Romania. This study investigated the impact of air pollutants on patients with chronic respiratory, cardiovascular, cerebrovascular, or metabolic diseases in Bucharest and its metropolitan area from 20 August 2018 to 1 June 2022. The daily limit values for particulate matter PM10 and PM2.5 were exceeded every month, especially during the cold season, with a decrease during the COVID-19 pandemic restrictions. A significant statistical correlation was found between the monthly average values of PM2.5 and PM10 and hospitalizations for respiratory and cardiovascular diseases. A 10 µg/m3 increase in monthly average values resulted in a 40–60% increase in admissions for each type of pathology, translating to more than 2000 admissions for each pathology for the study period. This study highlights the urgent need for national and local measures to ensure a cleaner environment and enhance public health in Romania according to international regulations. © 2023 by the authors.

4.
Atmosphere ; 14(5), 2023.
Article in English | Web of Science | ID: covidwho-20237776

ABSTRACT

Evidence suggests an association between air pollutant exposure and worse outcomes for respiratory viral diseases, like COVID-19. However, does breathing polluted air over many years affect the susceptibility to SARS-CoV-2 infection or severity of COVID-19 disease, and how intense are these effects? As climate change intensifies, air pollutant levels may rise, which might further affect the burden of respiratory viral diseases. We assessed the effect of increasing exposure to PM2.5 (particulate matter = 2.5 microns in diameter) on SARS-CoV-2 susceptibility or COVID-19 severity and projected the impact on infections and hospitalisations over two years. Simulations in a hypothetical, representative population show that if exposure affects severity, then hospital admissions are projected to increase by 5-10% for a one-unit exposure increase. However, if exposure affects susceptibility, then infections would increase with the potential for onward transmission and hospital admissions could increase by over 60%. Implications of this study highlight the importance of considering this potential additional health and health system burden as part of strategic planning to mitigate and respond to changing air pollution levels. It is also important to better understand at which point PM2.5 exposure affects SARS-CoV-2 infection through to COVID-19 disease progression, to enable improved protection and better support of those most vulnerable.

5.
Atmospheric Environment ; 306 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20237416

ABSTRACT

The additional impact of emission-reduction measures in North China (NC) during autumn and winter on the air quality of downwind regions is an interesting but less addressed topic. The mass concentrations of routine air pollutants, the chemical compositions, and sources of fine particles (PM2.5) for January 2018, 2019, and 2020 at a megacity of Central China were identified, and meteorology-isolated by a machine-learning technique. Their variations were classified according to air mass direction. An unexpectedly sharp increase in emission-related PM2.5 by 22.7% (18.0 mug m-3) and 25.7% (19.4 mug m-3) for air masses from local and NC in 2019 was observed compared to those of 2018. Organic materials exhibited the highest increase in PM2.5 compositions by 6.90 mug m-3 and 6.23 mug m-3 for the air masses from local and NC. PM2.5 source contributions related to emission showed an upsurge from 1.39 mug m-3 (biomass burning) to 24.9 mug m-3 (secondary inorganic aerosol) in 2019 except for industrial processes, while all reduced in 2020. From 2018 to 2020, the emission-related contribution of coal combustion to PM2.5 increased from 10.0% to 19.0% for air masses from the local area. To support the priority natural gas quotas in northern China, additional coal in cities of southern China was consumed, raising related emissions from transportation activities and road dust in urban regions, as well as additional biofuel consumption in suburban or rural regions. All these activities could explain the increased primary PM2.5 and related precursor NO2. This study gave substantial evidence of air pollution control measures impacting the downwind regions and promote the necessity of air pollution joint control across the administration.Copyright © 2023 Elsevier Ltd

6.
Environ Monit Assess ; 195(6): 763, 2023 May 30.
Article in English | MEDLINE | ID: covidwho-20240403

ABSTRACT

The spatiotemporal variation of the death and tested positive cases is poorly understood during the respiratory coronavirus disease 2019 (COVID-19) pandemic. On the other hand, COVID-19's spread was not significantly slowed by pandemic maps. The aim of this study is to investigate the connection between COVID-19 distribution and airborne PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm). Long-term exposure to high levels of PM2.5 is significantly connected to respiratory diseases in addition to being a potential carrier of viruses. Between April 2020 and March 2021, data on COVID-19-related cases were gathered for all prefectures in Japan. There were 9159, 109,078, and 451,913 cases of COVID-19 that resulted in death, severe illness, and positive tests, respectively. Additionally, we gathered information on PM2.5 from 1119 air quality monitoring stations that were deployed across the 47 prefectures. By using the statistical analysis tools in the Geographical Information System (GIS) software, it was found that the residents of prefectures with high PM2.5 concentrations were the most susceptible to COVID-19. Additionally, the World Health Organization-Air Quality Guidelines (WHO-AQG) relative risk (RR) of 1.04 (95% CI: 1.01-1.08), which was used to compute the PM2.5-caused deaths, was employed as well. Approximately 1716 (95% CI: 429-3,432) cases of PM2.5-related deaths were thought to have occurred throughout the study period. Despite the possibility that the actual numbers of both COVID19 and PM2.5-caused deaths are higher, humanitarian actors could use PM2.5 data to localize the efforts to minimize the spread of COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Relief Work , Humans , COVID-19/epidemiology , Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollution/analysis , Environmental Exposure/analysis
7.
Huan Jing Ke Xue ; 44(5): 2430-2440, 2023 May 08.
Article in Chinese | MEDLINE | ID: covidwho-20237414

ABSTRACT

To investigate the change characteristics of secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19, the online monitoring of winter meteorological and atmospheric pollutant concentrations in Zhengzhou from December 15, 2019 to February 15, 2020 was conducted using a high-resolution (1 h) online instrument. This study analyzed the causes of the haze process of COVID-19, the diurnal variation characteristics of air pollutants, and the distribution characteristics of air pollutants at different stages of haze.The results showed that Zhengzhou was mainly controlled by the high-pressure ridge during the haze process, and the weather situation was stable, which was conducive to the accumulation of air pollutants. SNA was the main component of water-soluble ions, accounting for more than 90%. Home isolation measures during COVID-19 had different impacts on the distribution characteristics of air pollutants in different haze stages. After COVID-19, the concentration of PM2.5 in the clean, occurrence, and dissipation stages increased compared with that before COVID-19 but significantly decreased in the development stage. The home isolation policy significantly reduced the high value of PM2.5. The concentrations of NO2, SO2, NH3, and CO were the highest in the haze development stage, showing a trend of first increasing and then decreasing. The concentration of O3 was lowest in the pre-COVID-19 development stage but highest in the post-COVID-19 development stage. The linear correlation between[NH4+]/[SO42-] and[NO3-]/[SO42-] at different time periods before and after COVID-19 was strong, indicating that the home isolation policy of COVID-19 did not change the generation mode of NO3-, and the corresponding reaction was always the main generation mode of NO3-. The correlation between[excess-NH4+] and[NO3-] was high in different periods before COVID-19, and NO3- generation was related to the increase in NH3 or NH4+ in the process of PM2.5 pollution in Zhengzhou.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Environmental Monitoring/methods , COVID-19/epidemiology , Respiratory Aerosols and Droplets , Air Pollutants/analysis , Air Pollution/analysis , Ions/analysis , Seasons , China/epidemiology
8.
Urban Clim ; : 101577, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20235193

ABSTRACT

Looking beyond COVID-19 outbreak, Scholars continue to develop innovative approaches to bring the city on to health and safety. Recent studies have indicated that urban spaces could produce or propagate pathogens, which is an urgent topic at the city level. However, there is a dearth of studies investigating the interrelationship between urban morphology and pandemics outbreak at the neighborhood level. Accordingly, this research will trace the effect of cities morphologies on the rate of spread of COVID-19 through a simulation study held on five areas that form the urban morphology of Port Said City, using Envi-met software. Results are explored based on the degree of concentration and rate of diffusion of coronavirus particles. It was observed on a regular basis that wind speed has a directly proportional relationship with the diffusion of the particles and an inversely proportional relationship with the concentration of the particles. However, certain urban characteristics led to inconsistent and opposing results like wind tunnels, shaded arcades, height variance, and spacious in-between spaces. Moreover, it is obvious that the city morphology is being transformed over time toward safer conditions; urban areas constructed recently have low vulnerability to respiratory pandemics outbreak compared to older areas.

9.
Atmospheric Pollution Research ; : 101814, 2023.
Article in English | ScienceDirect | ID: covidwho-20231310

ABSTRACT

PM2.5 pollution has significant impacts on human health and has been a persistent problem in Bangkok and its metropolitan area for many decades. To effectively address the issue, source identification is crucial. This study was aimed at determining the sources of PM2.5 in three regions;Pathumwan district in Bangkok, Mueang district in Samut Sakhon province, and Mueang district in Samut Prakan province. PM2.5 sampling was performed according to the Federal Reference Method (FRM). A combined total of 135 samples were collected across all three locations, over a 24-h period from December 2021 to February 2022 with 46.2 mm polytetrafluoroethylene (PTFE) membranes. The filters were analyzed using particle accelerator-based ion beam analysis techniques;Proton-induced X-ray emission, proton-induced gamma-ray emission, and proton elastic scattering analysis. Positive matrix factorization was used for source apportionment for the three locations. The results indicated that the main contributors to PM2.5 in Bangkok, Samut Prakan, and Samut Sakhon were biomass/solid waste burning (45.6%), traffic (43.7%), and construction (36.0%), respectively. These preliminary findings further supported the need for expanding these types of studies to implement specific strategies for a reduction of PM2.5 level in high activity cities and which could then be applied to other urban areas around the world.

10.
Atmosphere ; 14(5), 2023.
Article in English | Web of Science | ID: covidwho-20231193

ABSTRACT

Several countries implemented prevention and control measures in response to the 2019 new coronavirus virus (COVID-19) pandemic. To study the impact of the lockdown due to COVID-19 on multiple cities, this study utilized data from 18 cities of Henan to understand the air quality pattern change during COVID-19 from 2019 to 2021. It examined the temporal and spatial distribution impact. This study firstly utilized a deep learning bi-directional long-term short-term (Bi-LSTM) model to predict air quality patterns during 3 periods, i.e., COVID-A (before COVID-19, i.e., 2019), COVID-B (during COVID-19, i.e., 2020), COVID-C (after COVID-19 cases, i.e., 2021) and obtained the R-2 value of more than 72% average in each year and decreased MAE value, which was better than other studies' deep learning methods. This study secondly focused on the change of pollutants and observed an increase in Air Quality Index by 10%, a decrease in PM2.5 by 14%, PM10 by 18%, NO2 by 14%, and SO2 by 16% during the COVID-B period. This study found an increase in O-3 by 31% during the COVID-C period and observed a significant decrease in pollutants during the COVID-C period (PM10 by 42%, PM2.5 by 97%, NO2 by 89%, SO2 by 36%, CO by 58%, O-3 by 31%). Lastly, the impact of lockdown policies was studied during the COVID-B period and the results showed that Henan achieved the Grade I standards of air quality standards after lockdown was implemented. Although there were many severe effects of the COVID-19 pandemic on human health and the global economy, lockdowns likely resulted in significant short-term health advantages owing to reduced air pollution and significantly improved ambient air quality. Following COVID-19, the government must take action to address the environmental problems that contributed to the deteriorating air quality.

11.
Mapan-Journal of Metrology Society of India ; 2023.
Article in English | Web of Science | ID: covidwho-20231014

ABSTRACT

The present study is an attempt to establish relationship between the concentrations of particulate matter especially (PM2.5) and background meteorological parameters over Delhi, India with the help of statistical and correlative analysis. This work presents the evaluation of air quality in three different locations of Delhi. These locations were selected to fulfil the characteristics as residential, industrial and background locations and performed the analysis for pre and post covid-19, i.e. for 2019 and 2021. The outcome of the study shows that the meteorological parameters have significant influence on the PM2.5 concentration. It was also found that it has a seasonality with low concentration in the monsoon season, moderate in the pre-monsoon season and high during the winters and post-monsoon seasons. However, the statistical and correlative study shows a negative relation with the temperature during the winter, pre-monsoon and post-monsoon and has a positive correlation during the monsoon season. Similarly, it also has been observed that the concentration of PM2.5 shows strong negative correlation with temperature during the high humid conditions, i.e. when the relative humidity is above 50%. However, a weak correlation with ambient temperature has been established during the low humidity condition, i.e. below 50%. The overall study showed that the highest PM2.5 pollution has been observed at residential location followed by industrial and background. The study also concluded that the seasonal meteorology has a complex role in the PM2.5 concentration of the selected areas.

12.
J Infect Public Health ; 2023 Jun 03.
Article in English | MEDLINE | ID: covidwho-20231035

ABSTRACT

Although all walks of life are paying less attention to COVID-19, the spread of COVID-19 has never stopped. As an infectious disease, its transmission speed is closely related to the atmosphere environment, particularly the temperature (T) and PM2.5 concentrations. However, How T and PM2.5 concentrations are related to the spread of SARS-CoV-2 and how much their cumulative lag effect differ across cities is unclear. To identify the characteristics of cumulative lag effects of environmental exposure under city differences, this study used a generalized additive model to investigate the associations between T/PM2.5 concentrations and the daily number of new confirmed COVID-19 cases (NNCC) during the outbreak period in the second half of 2021 in Shaoxing, Shijiazhuang, and Dalian. The results showed that except for PM2.5 concentrations in Shaoxing, the NNCC in the three cities generally increased with the unit increase of T and PM2.5 concentrations. In addition, the cumulative lag effects of T/PM2.5 concentrations on NNCC in the three cities reached a peak at lag 26/25, lag 10/26, and lag 18/13 days, respectively, indicating that the response of NNCC to T and PM2.5 concentrations varies among different regions. Therefore, combining local meteorological and air quality conditions to adopt responsive measures is an important way to prevent and control the spread of SARS-CoV-2.

13.
Ieee Access ; 10:10176-10190, 2022.
Article in English | Web of Science | ID: covidwho-2328268

ABSTRACT

Air pollution, especially the continual increase in atmospheric particulate matter (PM), is a global environmental challenge. To reduce the PM concentration, a remarkable amount of machine learning-based research has been proposed. However, increasing the accuracy of the predictions and providing clear interpretations of the predictions are challenging. In particular, no studies have addressed models that predict and interpret PM before and during the COVID-19 pandemic. In this paper, we present a two-step predictive and explainable model to obtain insights into reducing PM. We first use attentive multi-task learning to predict the air quality of cities. To accurately predict the concentration of particles with sizes of similar to 10 mu m or similar to 2.5 mu m (PM10 and PM2.5, respectively), we demonstrate a performance difference between single-task and multi-task learning, as well as among the state-of-the art methods. The proposed attentive model with multi-task learning outperformed the others in terms of accuracy performance. We then used Shapley additive explanations, a representative explainable artificial intelligence framework, to interpret and determine the significance of features for predicting PM10 and PM2.5. We demonstrated the superiority of the proposed approach in predicting and explaining both PM10 and PM2.5 concentrations, and observed a statistically significant difference in air pollution before and during the COVID-19 pandemic.

14.
J Environ Manage ; 343: 118252, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-2328110

ABSTRACT

The study aimed to investigate the PM2.5 variations in different periods of COVID-19 control measures in Northern Taiwan from Quarter 1 (Q1) 2020 to Quarter 2 (Q2) 2021. PM2.5 sources were classified based on long-range transport (LRT) or local pollution (LP) in three study periods: one China lockdown (P1), and two restrictions in Taiwan (P2 and P3). During P1 the average PM2.5 concentrations from LRT (LRT-PM2.5-P1) were higher at Fuguei background station by 27.9% and in the range of 4.9-24.3% at other inland stations compared to before P1. The PM2.5 from LRT/LP mix or pure LP (Mix/LP-PM2.5-P1) was also higher by 14.2-39.9%. This increase was due to higher secondary particle formation represented by the increase in secondary ions (SI) and organic matter in PM2.5-P1 with the largest proportion of 42.17% in PM2.5 from positive matrix factorization (PMF) analysis. A similar increasing trend of Mix/LP-PM2.5 was found in P2 when China was still locked down and Taiwan was under an early control period but the rapidly increasing infected cases were confirmed. The shift of transportation patterns from public to private to avoid virus infection explicated the high correlation of the increasing infected cases with the increasing PM2.5. In contrast, the decreasing trend of LP-PM2.5-P3 was observed in P3 with the PM2.5 biases of ∼45% at all the stations when China was not locked down but Taiwan implemented a semi-lockdown. The contribution of gasoline vehicle sources in PM2.5 was reduced from 20.3% before P3 to 10% in P3 by chemical signatures and source identification using PMF implying the strong impact of strict control measures on vehicle emissions. In summary, PM2.5 concentrations in Northern Taiwan were either increased (P1 and P2) or decreased (P3) during the COVID-19 pandemic depending on control measures, source patterns and meteorological conditions.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Taiwan/epidemiology , Particulate Matter/analysis , COVID-19/epidemiology , Pandemics , Communicable Disease Control , Air Pollution/analysis , Vehicle Emissions/analysis , Environmental Monitoring
15.
Air Qual Atmos Health ; : 1-20, 2023 May 18.
Article in English | MEDLINE | ID: covidwho-2328083

ABSTRACT

Abstract: A field study was carried out in the Metropolitan Area of Monterrey (MAM), the second most populated city in Mexico, characterized by increasing urbanization, high traffic density, and intense industrial activity. These characteristics commonly present high concentrations of air pollutants leading to the degradation of air quality. PM2.5 was analyzed for heavy metals at two urban sites located within the MAM (Juarez and San Bernabe) in order to determine sources, health risk, morphology, and elemental content during the COVID-19 pandemic (autumn 2020 and spring 2021). Twenty-four-hour samples of PM2.5 were collected at each site during 30-day periods using high-volume equipment. Gravimetric concentrations and 11 metals were measured (Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Ni, Cr, and Pb) by different analytical techniques (flame atomic absorption spectroscopy, graphite furnace atomic absorption spectroscopy, and inductively coupled plasma optical emission spectroscopy). Selected samples were analyzed by scanning electron microscopy-energy-disperse spectroscopy in order to characterize their morphology and elemental content. PM2.5 concentrations exceeded the Mexican standard and WHO guidelines in Juarez during spring 2021. Cu, Cd, and Co were highly enriched by anthropogenic sources, and Ni, K, Cr, and Pb had a moderate enrichment. Mg, Mn, and Ca were of crustal origin. Bivariate statistics and PCA confirmed that alkaline metals originated from crustal sources and that the main sources of trace metals included traffic emissions, resuspension from soil/road dust, steel industry, smelting, and non-exhaust emissions at both sites. Lifetime cancer risk coefficients did not exceed the permissible levels established by EPA and WHO, implying that local residents are not at risk of developing cancer. Non-carcinogenic risk coefficients revealed that there is a possible risk of suffering cardiovascular and respiratory diseases due to inhalation of cobalt at the study sites. Supplementary Information: The online version contains supplementary material available at 10.1007/s11869-023-01372-7.

16.
Environ Pollut ; 331(Pt 2): 121886, 2023 Aug 15.
Article in English | MEDLINE | ID: covidwho-2327767

ABSTRACT

In December 2019, the New Crown Pneumonia (the COVID-19) outbroke around the globe, and China imposed a nationwide lockdown starting as early as January 23, 2020. This decision has significantly impacted China's air quality, especially the sharp decrease in PM2.5 (aerodynamic equivalent diameter of particulate matter less than or equal to 2.5 µm) pollution. Hunan Province is located in the central and eastern part of China, with a "horseshoe basin" topography. The reduction rate of PM2.5 concentrations in Hunan province during the COVID-19 (24.8%) was significantly higher than the national average (20.3%). Through the analysis of the changing character and pollution sources of haze pollution events in Hunan Province, more scientific countermeasures can be provided for the government. We use the Weather Research and Forecasting with Chemistry (WRF-Chem, V4.0) model to predict and simulate the PM2.5 concentrations under seven scenarios before the lockdown (2020.1.1-2020.1.22) and during the lockdown (2020.1.23-2020.2.14). Then, the PM2.5 concentrations under different conditions is compared to differentiate the contribution of meteorological conditions and local human activities to PM2.5 pollution. The results indicate the most important cause of PM2.5 pollution reduction is anthropogenic emissions from the residential sector, followed by the industrial sector, while the influence of meteorological factors contribute only 0.5% to PM2.5. The explanation is that emission reductions from the residential sector contribute the most to the reduction of seven primary contaminants. Finally, we trace the source and transport path of the air mass in Hunan Province through the Concentration Weight Trajectory Analysis (CWT). We found that the external input of PM2.5 in Hunan Province is mainly from the air mass transported from the northeast, accounting for 28.6%-30.0%. To improve future air quality, there is an urgent need to burn clean energy, improve the industrial structure, rationalize energy use, and strengthen cross-regional air pollution synergy control.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Air Pollutants/analysis , Communicable Disease Control , Air Pollution/analysis , Particulate Matter/analysis , China/epidemiology
17.
2023 CHI Conference on Human Factors in Computing Systems, CHI 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2323709

ABSTRACT

Good indoor air quality (IAQ) is critically important for many aspects of our lives, including as we've found recently in reducing the transmission of airborne diseases such as COVID-19. Delivering good IAQ poses several challenges to organisations: it can require changes in working practices, be bounded by infrastructure capabilities such as buildings and their heating and ventilation systems, and result in substantial energy usage. In this study we have conducted a preliminary investigation measuring IAQ in a typical 'science lab' classroom, and engaging with stakeholders to jointly explore these data. Our mixed methods approach uncovers an indoor air quality 'trilemma', which relates air quality, energy usage, and stakeholder practices that can be mediated by, and understood as, a site for potentially impactful future HCI designs. © 2023 Owner/Author.

18.
Aerosol and Air Quality Research ; 23(5), 2023.
Article in English | Web of Science | ID: covidwho-2323679

ABSTRACT

The outbreak of COVID-19 pandemic in northern Taiwan led to the implementation of Level 3 alert measures during 2021 and thereby impacted the air quality significantly, which provided an unprecedented opportunity to better understand the control strategies on air pollutants in the future. This study investigated the variations in sources, chemical characteristics and human health risks of PM2.5 comprehensively. The PM2.5 mass concentrations decreased from pre-alert to Level 3 alert by 49.4%, and the inorganic ions, i.e., NH4+, NO3- and SO42-, dropped even more by 71%, 90% and 52%, respectively. Nonetheless, organic matter (OM) and elemental carbon (EC) simply decreased by 36% and 13%, which caused the chemical composition of PM2.5 to change so that the carbonaceous matter in PM2.5 dominated instead of the inorganic ions. Correlation-based hierarchical clustering analysis further showed that PM2.5 was clustered with carbonaceous matter during the Level 3 alert, while that clustered with inorganic ions during both pre-alert and post-alert periods. Moreover, 6 sources of PM2.5 were identified by positive matrix factorization (PMF), in which secondary nitrate (i.e., aging traffic aerosols) exhibited the most significant decrease and yet primary traffic-related emissions, dominated by carbonaceous matter, changed insignificantly. This implied that secondary traffic-related aerosols could be easily controlled when traffic volume declined, while primary traffic source needs more efforts in the future, especially for the reduction of carbonaceous matter. Therefore, cleaner energy for vehicles is still needed. Assessments of both carcinogenic risk and non-carcinogenic risk induced by the trace elements in PM2.5 showed insignificant decrease, which can be attributed to the factories that did not shut down during Level 3 alert. This study serves as a metric to underpin the mitigation strategies of air pollution in the future and highlights the importance of carbonaceous matter for the reduction in PM2.5.

19.
Bangladesh Journal of Medical Science ; 22(2):454-456, 2023.
Article in English | EMBASE | ID: covidwho-2326047
20.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325966

ABSTRACT

This study aimed to evaluate the feasibility of using low-cost solutions to monitor and mitigate PM2.5 and PM10 concentrations in nursery and primary schools in Porto (Portugal). Three periods were considered: i) early 2020 (before COVID-19 pandemic), ii) early 2021 (during COVID-19 pandemic, with mitigation measures to prevent SARS-CoV-2 spread);and iii) in the middle of 2021 (additionally using a low-cost portable air cleaner). PM2.5 and PM10 were continuously monitored with a low-cost sensing device for at least two consecutive days in five classrooms. In general, the lowest PM concentrations were observed in the third period. Concentrations reduced up to 63% from the second to the third period. The application of low-cost solutions for monitoring and mitigating PM levels seems to be an effective tool for managing indoor air in schools. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL